Analytical modeling of graphene oxide based memristor
نویسندگان
چکیده
منابع مشابه
Memristor Modeling
In the first week of the internship, I was tasked with creating a VerilogA model of memristors I could use for further simulations. As there is no single predominant model, I explored the range of models used in published works and implemented several in VerilogA. All these models are in the RRAM library, and they all have a name with the prefix memr_model. Below is an explanation of each model...
متن کاملRheological Behavior of Water-Ethylene Glycol Based Graphene Oxide Nanofluids
Traditionally water-ethylene glycol mixture based nanofluids are used in cold regions as a coolant in the car radiators. In the present study, the rheological properties of water-ethylene glycol based graphene oxide nanofluid are studied using Non-Equilibrium Molecular Dynamics (NEMD) method at different temperatures, volume concentrations, and shear rates. NEMD simulations are perfor...
متن کاملQuantum modeling of light absorption in graphene based photo-transistors
Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...
متن کاملMemristor SPICE Modeling
Modeling of memristor devices is essential for memristor based circuit and system design. This chapter presents a review of existing memristor modeling techniques and provides simulations that compare several existing models to published memristor characterization data. A discussion of existing models is presented that explains how the equations of each relate to physical device behaviors. The ...
متن کاملModeling the AgInSbTe Memristor
The AgInSbTe memristor shows gradual resistance tuning characteristics, which makes it a potential candidate to emulate biological plastic synapses. The working mechanism of the device is complex, and both intrinsic charge-trapping mechanism and extrinsic electrochemical metallization effect are confirmed in the AgInSbTe memristor. Mathematical model of the AgInSbTe memristor has not been given...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ain Shams Engineering Journal
سال: 2021
ISSN: 2090-4479
DOI: 10.1016/j.asej.2020.08.026